dWS
>

COMMUNITY DAY

CIl/CD: GitHub Actions to ECS

Peter Sankauskas | @pas256 | Sept 2024
he/him

CIl/CD: GitHub Actions to ECS

| wanted to show you How to draw

an Owl.
A few easy steps A fun and creative guide for beginners

 Simple to follow

e Get it running yourself \—A

N
a -
\ \'- \'\ .
1 \ e Y
\J \ ‘ ..‘ .
Fig 1. Draw two) i D h he d l

@pas256

CIl/CD: GitHub Actions to ECS

Don't take notes

e Focus and connect the dots

 Slides and code available online

@pas256

Overview

ci.yml

on: push
& Test m3ls @ e @ Build, tag & push imag... 2m 49s e e & Deploy to ECS 7m 32s
& Lint and scan 23s

@pas256

Take advantage of OIDC

* OpenlD Connect (OIDC) is an identity layer built on top
of the OAuth 2.0 framework

e Grant GitHub access to make AWS API calls

... without long live credentials ...

@pas256

= | =
= — .\\ | :77; i

IS NOT JUST AN
AFTERTHOUGHT

Required AWS API Permissions

dWsS

»

1) Push image to ECR repository

3

)

2) Read current ECS Task Definition the ECS Service is using
) Create and register a new ECS Task Definition using the new image
)

4) Update ECS Service to use new Task Definition

@pas256

|ldentity Provider

IAM) Identity providers » token.actions.githubusercontent.com

token.actions.githubusercontent.com ..«

Assign role Delete

Summary

Provider Provider Type Creation Time ARN

token.actions.githubusercontent.com OpenliD Connect May 14, 2024, 14:00 (UTC-07:00) arn:aws:iam::730335542499:0idc-
provider/token.actions.githubuser
content.com

Audiences (1) Endpoint verification Tags

Audiences (1)

Also known as client ID, audience is a value that identifies the application that is registered with an OpenID Connect provider.

Audience

sts.amazonaws.com

Actions V¥

Official provider name
for GitHub

IAM Role - Trust relationship

IAM > Roles > github-oidc-provider-aws

Name of your Role
github-oidc-provider-aws .

Role assumed by the GitHub OIDC provider.

Permissions Trust relationships Tags (1) Access Advisor Revoke sessions

Trusted entities Edit trust policy

Entities that can assume this role under specified conditions.

L=

2 "Version": "2012-10-17",

3~ "Statement": [

4- {

5 "Effect": "Allow",

6~ "Principal”: { - —

7 "Federated": "arn:aws:iam::730335542499:0idc-provider{token.actions.githubusercontent.com")

8 } ’ i —— . '

9 "Action": "sts:AssumeRoleWithWebIdentity",

10 -~ "Condition": {

11 -~ "Stringlike": { _ ”* — -

12 "token.actions.githubusercontent.com:sub" ("repo:pas256/ensorcell:*" R_eStnCt to yo_ur
13 } S~— , GitHub repository
14 }

15 }

16]

IAM Role - Permissions

IAM > Roles > github-oidc-provider-aws

github-oidc-provider-aws .

Role assumed by the GitHub OIDC provider.

Permissions Trust relationships Tags (1)

Access Advisor Revoke sessions

Permissions policies (2) nfo & Simulate [
You can attach up to 10 managed policies.
Filter by Type
Q Search | l All types v

[] Policy name [/

f

C_W¥ AmazonEC2ContainerRegistryPowerUser

—————

£ | Type
AWS managed

Customer managed

Remove

v

Add permissions V¥

Attached entities v

1 Cover (1) - push image to ECR
1 Cover (2), (3) and (4)

Terraform GitHub OIDC module

GitHub OIDC permissions to push 1images to ECR
module "github-oidc" {

source = "terraform-module/github—-oidc-provider/aws"
version = "~> 2.2"
create_oidc_provider = true
create_oidc_role = true - -
. . Your GitHub r it
repositories = ["pas256/ensorcell"] our GitHub repository
repositories = ["pas256/ensorcell:ref:refs/heads/main"] or restrict to main branch only (no PRs)
oidc_role_attach_policies = |

"arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryPowerUser", Use AWS's policy to cover (1)
aws_lam_policy.update_service_policy.arn,

Use our policy to cover the rest

resource "aws_iam_policy" "update_service_policy" {

name = "update-service-ensorcell-webapp—-prod"
description = "Allows updating the ECS task definition and service"
policy = jsonencode({ ... })

; ?27?

@pas256

AWS API permissions required

1) Push image to ECR repository J

2) Read current ECS Task Definition the ECS Service is using

3) Create and register a new ECS Task Definition using the new image
)

4) Update ECS Service to use new Task Definition

@pas256

Update Policy - Statement 1/3

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "ManageTaskDefinitions",
"Effect": "Allow",
"Action": [
"ecs:DescribeTaskDefinition", Covers (2)
] ‘ecs:RegisterTaskDefinition" |Goyers (3)
'"Resource": "x"
}l
{ ...},
{ ...}
]
}

@pas256

Update Policy - Statement 2/3

"Version': "2012-10-17",
"Statement": [
{ ... },
{
"Sid": "DeployService",
"Effect": "Allow",
"Action": [

‘ecs:Describeservices®, Govers (4) or does it?
"ecs:UpdateService"

I

"Resource"' |

S

(\ "arn:aws: eCEB:EZWZ§¥_E_7§6§35542499 serv1ce/my ecscluster/myprod—webapp",4\
Add more services here] * — —

Cluster Service

@pas256

Task Definition for Service

A"family": "my—-prod-webapp",

/' “taskRoleArn": "arn:aws:iam::730335542499:role/my-task-role",
k\ "executionRoleArn™: "arn:aws:1lam::730335542499:role/my-ecs-task-execution-role",

The GitHub OIDC IAM Role
needs to pass these roles
to the updated Service

"requiresCompatibilities": ["FARGATE"],
"containerDefinitions": [{

"name": "ensorcell-webapp—-prod-webapp",
""image": '"730335542499.dkr.ecr.us—-west-2.amazonaws.com/ensorcell/app:main.20240823-200431.719f87f.c1",
"cpu'': 1024,

"memory": 2048,
"essential': true,
"portMappings": [...],
"environment": [... 1,

"secrets": [... 1,

"logConfiguration": { e
"logDriver": "awslogs", e.g. Permission to log
"options": { to CloudWatch LOQS

"aws logs—group': "/prod/ecs/ensorcell-webapp",
"awslogs—-region": "us—-west-2",
"awslogs—stream—-prefix": "ecs"

@pas256

Update Policy - Statement 3/3

{
"Version': "2012-10-17",
"Statement": [
{ ... },
{ ... },
{
"Sid": "PassRolesInTaskDefinition", Covers the rest of (4)
"Effect": "Allow",
"Action": [
""1am:PassRole"
] ’
"Resource”: | -
(/ "arn:aws:iam: :730335542499: role/my—-ecs-task—-execution-role",
. "arn:aws:iam::730335542499:role/my-task-role"
] — = et A
I3
]
I3

@pas256

AWS API permissions required

1) Push image to ECR repository J
2) Read current ECS Task Definition the ECS Service is using /

)

)

3) Create and register a new ECS Task Definition using the new image J
4) Update ECS Service to use new Task Definition J

L
34
40 39 38 . 3
41 o ° ° 37 35 o
Q . ° 36 . 2.3
L N 2.4
43
L]
0e 25
. 22
44 2.9 .
o 26
28 .
o
45
21
L
1816 2
O weme Ot 17
13#;#& il
T 18
1 M. °
"’\;\ 12 0 y
T @ Savarn @ vImE O % %oy,
5 6 .
"

oy
2%}*\
" 04

3 ™ o

4

@pas256

ECR Repository Permissions

Amazon ECR > Private registry > Repositories > ensorcell/app > Permissions

PermiSSionS Edit policy JSON Edit

Statements

No statements

You don't have any permission statements for this repository. N oth'ng req ired here
l ul

Edit

AWS side is done now

@pas256

GitHub Workflow

=
= O pas256 | ensorcell & Q Type [/] to search + ~ ® N B8 1

¢> Code 19 Pullrequests (») Actions () Security 1 |~ Insights {8 Settings

¢ CI/CD Pipeline

@ Bump rails from 7.2.0 to 7.2.1 (#116) #314 Re-run all jobs
I () Summary
Triggered via push 7 hours ago Status Total duration Billable time Artifacts
Jobs 2 pas256 pushed -o- a492e77 main Success 17m 21s 15m 1
@ Test
Lint and scan -
© cr.ymi
& Test assets:precompile on: push
@ Build, tag & push image to ECR (
|
& Deploy to ECS |
@ Test m31s @ e @ Build, tag & push imag... 2m 49s e e @ Deploy to ECS
Run details
@ Lint and scan 23s
(% Usage \\
SN Workflow file « You know how to
Focus here

test your own app

@pas256

GitHub Workflow Overview

This workflow will run the entire CI/CD pipeline Y —_—
name: "CI/CD Pipeline" | make_image:
on: | name: Build, tag & push image to ECR
push: &\ | o
branches: ["main"] d=1 .ﬁ —
pull_request: €p oy: enloy to ECS
branches: ["main"] hame: Ueploy to
jobs:
test:

name: Test

lint:
name: Lint and scan

.gilthub/workflows/ci.yml

@pas256

Job: Build, tag & push image to ECR

Build, tag & push image to ECR

succeeded 10 hours ago in 2m 49s C"‘ Search logs i:; f’::’;(
& Setupjob 3s
& Checkout code Bs
() Checkout code (PR version) fs
& Configure AWS Credentials fs
& Login to Amazon ECR fs SO0000 many StepS
& Set up Docker Buildx 1s
O Cache Docker layers Qg
& Calculate image tag fs
O Clean up commit message @s
& Create the full tag fs
Q Build, tag and push image to Amazon ECR 2m 14s
Q Move cache to avoid growing forever @s
Q Post new iImage tag to Slack @s
Q Post Build, tag and push image to Amazon ECR 25
O Post Cache Docker layers 11s
& Post Set up Docker Buildx 3s

Configure OIDC permissions

Ma ke_image: No releases published
name: Build, tag & push image to ECR Create a new release

runs—on: ubuntu-latest
environment: production

Packages

No packages published
Publish your first package

Only run this job if the CI job was successful
needs: [test, lint]

Deployments 236
Do not run on PRs

if: github.event_name '= 'pull_request’
#if: github.actor != 'dependabot[bot]' + 235 deployments

@ production yesterday

Languages

.gilthub/workflows/ci.yml

@pas256

Configure OIDC permissions

make_1image:

name: Build, tag & push 1image to ECR steps:
runs—on: ubuntu-latest — name: Configure AWS Credentials
environment: production uses: aws—actions/configure—aws—-credentials@v4
with:
Only run this job if the CI job was successful audience: sts.amazonaws.com
needs: [test, lint] aws—region: us-—-west-2
role-to—-assume: |
Do not run on PRs arn:aws:iam::730335542499:role/github—-oidc—-provider—aws
if: github.event_name '= 'pull_request’
#if: github.actor != 'dependabot[bot]"

Permissions needed for 0IDC
permissions:

contents: read

1d-token: write

Qutputs to be used by other jobs — Make these available for the next job
outputs:

image _tag: ${{ steps.image_tag.outputs.image_tag }}] github/wo rkflows/c1l. ym'l_
image: ${{ steps.full tag.outputs.image }}

@pas256

Configure OIDC permissions

make_1image:
name: Build, tag & push image to ECR |
runs—on: ubuntu-latest .
environment: production

Only run this job if the CI job was successful
needs: [test, lint]

Do not run on PRs

if: github.event_name '= 'pull_request’
#if: github.actor != 'dependabot[bot]"

/

[

OIDC AWS Magic

Permissions needed for 0OIDC

permissions:
contents: read
id—-token: write

\

— = = ——— _————— e =

Outputs to be used by other jobs

outputs:
image_tag: ${{ steps.image_tag.outputs.image_tag }}
image: ${{ steps.full _tag.outputs.image }}

@pas256

s

k\?rn:aws:iam::73@335542499:role/github—oidc—provider—aws

E—

steps:
— name: Configqure AWS Credentials
uses: aws—actions/configure—aws—-credentials@v4
with:
audience: sts.amazonaws.com
aws—region: us—-west-2
role-to—assume: |

—

=S —_— = —— E—— =

.gilthub/workflows/ci.yml

IAM Role - Permissions

IAM > Roles > github-oidc-provider-aws

P
(:

_ github-oidc-provider-aws .)

Role assumed by the GitHub OIDC provider.

Permissions Trust relationships Tags (1) Access Advisor Revoke sessions

Permissions policies (2) info C Simulate [Remove Add permissions ¥

You can attach up to 10 managed policies.

Filter by Type
Q Search | l All types v 1 &
- Policy name [4 | Type v Attached entities v
[] * AmazonEC2ContainerRegistryPowerUser AWS managed 1

] +] update-service-ensorcell-webapp-prod Customer managed 1

Configure OIDC permissions

make_1image:
name: Build, tag & push image to ECR |
runs—on: ubuntu-latest .
environment: production

Only run this job if the CI job was successful
needs: [test, lint]

Do not run on PRs

if: github.event_name '= 'pull_request’
#if: github.actor != 'dependabot[bot]"

/

[

OIDC AWS Magic

Permissions needed for 0OIDC

permissions:
contents: read
id—-token: write

\

— = = ——— _————— e =

Outputs to be used by other jobs

outputs:
image_tag: ${{ steps.image_tag.outputs.image_tag }}
image: ${{ steps.full _tag.outputs.image }}

@pas256

s

K\?rn:aws:iam::73@335542499:role/github—oidc—provider—aws

E—

steps:
— name: Configqure AWS Credentials
uses: aws—actions/configure—aws—-credentials@v4
with:
audience: sts.amazonaws.com
aws—region: us—-west-2
role-to—assume: |

—

=S —_— = —— E—— =

.gilthub/workflows/ci.yml

Configure OIDC permissions

make_1image:
name: Build, tag & push image to ECR
runs—on: ubuntu-latest
environment: production

Only run this job if the CI job was successful
needs: [test, lint]

Do not run on PRs
if: ${{ github.event_name '= 'pull_request' }}
#if: ${{ github.actor !'= 'dependabot[bot]"' }}

Permissions needed for 0IDC
permissions:

contents: read

1d-token: write

Outputs to be used by other jobs

outputs:
image_tag: ${{ steps.image_tag.outputs.image_tag }}
image: ${{ steps.full _tag.outputs.image }}

@pas256

steps:
— name: Configure AWS Credentials
uses: aws—actions/configure—aws—-credentials@v4
with:
audience: sts.amazonaws.com
aws—region: us—-west-2
role-to—-assume: |
arn:aws:iam::730335542499:role/github—-oidc—-provider—aws

= - =

://— name: Login to Amazon ECR
id: login_ecr
uses: aws—actions/amazon-ecr-login@v?2

= —— = - — — ————

.gilthub/workflows/ci.yml

Checkout code, set up Docker, tag

make_1image:

name: Build, tag & push image to ECR
steps:

— name: Checkout code
if: ${{ github.event_name != 'pull_request' }}

uses: actions/checkout@v4

— name: Checkout code (PR version)

if: ${{ github.event_name == 'pull_request' }}
uses: actions/checkout@v4
with:

PRs do a merge commit before running the
workflow, so we need to checkout the code
without that to get the correct SHA.

See: https://github.com/actions/checkout/issues/426
ref: ${{ github.event.pull_request.head.sha }}

— name: Set up Docker Buildx
uses: docker/setup—buildx—action@v3

@pas256

— name: Cache Docker layers

uses: actions/cache@v4
with:
path: /tmp/.buildx—cache

key: ${{ runner.os }}-buildx-${{ github.sha }}
restore—keys: |

¢{{ runner.os }}-buildx-

name: Calculate image tag
id: 1mage_tag
run: echo "image_tag=%$(./bin/image-tag.sh)" >>

$GITHUB_OUTPUT Save output |

name: Clean up commit message
id: commit
run: echo "message=$(git log -1 ——pretty=%B | head -1)"
>> $GITHUB_OUTPUT
Save output

.gilthub/workflows/ci.yml

Tag script

#!/bin/bash
set —-e

NOW=$(date +'%Y%m%d—%H%M%S ")
SHORT_SHA=$(git rev-parse —--short HEAD)
BRANCH=$(git rev-parse ——abbrev-ref HEAD \
sed -re 's/["a-z0-9-1/-/g"' \

cut -c1-30 \

sed -re 's/—+/-/g"' \

sed -re 's/-$//")

The image tag will be in the format:

- GitHub PR: pr-123.YYYMMDD-HHMMSS.SHAQ123.c1

- GitHub main: BRANCH. YYYMMDD-HHMMSS . SHAQ123.ci

- Local main: BRANCH. YYYMMDD-HHMMSS . SHAQ123. local
- Local branch: BRANCH. YYYMMDD-HHMMSS . SHAQ123. local

@pas256

if [["$GITHUB_REF" == refs/pullx]]; then
IMAGE_TAG_PREFIX=pr-$(echo $GITHUB_REF | cut -d'/' -f3)
else
IMAGE_TAG_PREFIX=$BRANCH
f1i

if [["$CI" == true 11; then
IMAGE_TAG_SUFFIX=c1i

else
IMAGE_TAG_SUFFIX=local

fi

IMAGE TAG="${IMAGE_TAG_PREFIX}.${NOW}.${SHORT SHA}.$
{IMAGE_TAG_SUFFIX}"

echo $IMAGE_TAG

1mage-tag.sh

30

Task Definition for Service

"family": "my-prod-webapp",
"taskRoleArn': "arn:aws:1iam::730335542499:role/my-task-role",
"executionRoleArn": "arn:aws:1iam::730335542499:role/my—ecs—-task—-execution-role",

"networkMode": "awsvpc",
"requiresCompatibilities": ["FARGATE"],
"containerDefinitions": [{
"name": "ensorcell-webapp—-prod-webapp", o ~ e
"1mage"': "730335542499.dkr.ecr.us—west—z.amazonaws.com/ensorcell/app(@ain.2@%40823—200431.719f87f.ci",;,
"cpu': 1024,
"memory": 2048,
"essential': true,
"portMappings": [... 1],
"environment": [... 1,
"secrets": [... 1,
"logConfiguration": {
"logDriver": "awslogs",
"options": {
"aws logs—group': "/prod/ecs/ensorcell-webapp",
"awslogs—-region": "us—-west-2",
"awslogs—stream—-prefix": "ecs"

@pas256

Checkout code, set up Docker, tag

make_1image:

name: Build, tag & push image to ECR
steps:

— name: Checkout code
if: ${{ github.event_name != 'pull_request' }}

uses: actions/checkout@v4

— name: Checkout code (PR version)

if: ${{ github.event_name == 'pull_request' }}
uses: actions/checkout@v4
with:

PRs do a merge commit before running the
workflow, so we need to checkout the code
without that to get the correct SHA.

See: https://github.com/actions/checkout/issues/426
ref: ${{ github.event.pull_request.head.sha }}

— name: Set up Docker Buildx
uses: docker/setup—buildx—action@v3

@pas256

— name: Cache Docker layers

uses: actions/cache@v4
with:
path: /tmp/.buildx—cache

key: ${{ runner.os }}-buildx-${{ github.sha }}
restore—keys: |

¢{{ runner.os }}-buildx-

name: Calculate image tag
id: 1mage_tag
run: echo "image_tag=%$(./bin/image-tag.sh)" >>

$GITHUB_OUTPUT Save output |

name: Clean up commit message
id: commit
run: echo "message=$(git log -1 ——pretty=%B | head -1)"
>> $GITHUB_OUTPUT
Save output

.gilthub/workflows/ci.yml

Tag & push to ECR

make_1image:
name: Build, tag & push image to ECR
steps:

— name: Create the full tag
id: full_tag
env.:
ECR_REGISTRY: ${{ steps.login_ecr.outputs.registry }}
ECR_REPOSITORY: ensorcell/app
IMAGE_TAG: ${{ steps.image_tag.outputs.image_tag }}
run: |

echo "image=$ECR_REGISTRY/$ECR_REPOSITORY: $IMAGE_TAG"

>> $GITHUB_OUTPUT
Save output

pwd
echo "$IMAGE_TAG" > ./RELEASE

ts ~la Include in image

@pas256

— name: Build, tag and push image to Amazon ECR
uses: docker/build-push-action@v6

with:
context:
push: true Use output

tags: ${{ steps.full_tag.outputs.image }}
cache-from: type=local,src=/tmp/.buildx—cache

.gilthub/workflows/ci.yml

Clean up & Post to Slack

make_1image:
name: Build, tag & push image to ECR
steps:

— # Temp fix
https://github.com/docker/build-push-action/issues/252
https://github.com/moby/buildkit/1ssues/1896
name: Move cache to avoid growing forever
run: |
rm —rf /tmp/.buildx—cache
mv /tmp/.buildx—cache-new /tmp/.buildx—-cache

Optional — name: Post new image tag to Slack

uses: slackapi/slack—-github—-action@vl.26.0

env:
SLACK_BOT_TOKEN: ${{ secrets.SLACK_BOT_TOKEN }}
IMAGE_TAG: ${{ steps.image_tag.outputs.image_tag }}
COMMIT_MESSAGE: ${{ steps.commit.outputs.message }}

with:
channel-1d: "COQ75ND1EKEH"

payload: |
{
"blocks": [
{

"type": "section",

"text": o
"type': "mrkdwn",
"text":

"<https://github.com/pas256/ensorcell/actions/runs/$

{{ github.run_id }}|GA Run: #${{ github.run_number }}>\n
> ${{ env.COMMIT_MESSAGE }}\n

New image: “${{ env.IMAGE_TAG }} "

}
}

.gilthub/workflows/ci.yml

@pas256

Slack notification

cell-builder APP 10:23 pM

| Bump sidekiq from 7.3.0 to 7.3.1 (#102)

New image: main.20240816-052053 . dé

@pas256

Overview

ci.yml

on: push
& Test Tm 31s
@ Lint and scan 23s

@pas256

e @ Build, tag & push imag... 2m 49s e

/
/

-

e & Deploy to ECS

Job: Deploy to ECS

Deploy to ECS

g o\

Q. Search logs 3
succeeded 9 hours ago in 7/m 32s
& Setupjob 75
& Checkout code 1s
& Configure AWS Credentials 1s
O Download task definition for webapp 1s
Q Download task definition for sidekiq workers @s
O Fill in the new image ID in the Amazon ECS task definition for webapp @s) d) 2 ECS .
<= 1S Aoln services
O Fill In the new image ID in the Amazon ECS task definition for workers @s g
O Notify Slack deployment for workers has started @s
O Start timer to monitor the duration of the deployment @s
O Deploy Amazon ECS task definition workers 3m 565
O Format task definition for workers @s
O Update timer and calculate duration @s
O Update Slack with success for workers @s
() Update Slack with failure for workers s
(») Set flag for workers failure s
Q Deploy Amazon ECS task definition webapp 3m 26s
& Format task definition for webapp @s

Job: Deploy to ECS

¥ e R P P

(
(
(
(
(
[
(
(
(
(
(

C? Download task definition for sidekiq workers @s
& Fill in the new image ID in the Amazon ECS task definition for webapp @s
& Fill in the new image ID in the Amazon ECS task definition for workers 0s
O Notify Slack deployment for workers has started @s
& Start timer to monitor the duration of the deployment 0s
v @ Deploy Amazon ECS task definition workers 3m 565s Main depl Oy Step

1 » Run aws-actions/amazon-ecs-deploy-task-definition@v2

15 Warning: Ignoring property 'compatibilities' in the task definition file. This property is returned by the Amazon ECS
DescribeTaskDefinition API and may be shown in the ECS console, but it 1s not a valid field when registering a new task
definition. This field can be safely removed from your task definition file.

16 Warning: Ignoring property 'taskDefinitionArn' in the task definition file. This property is returned by the Amazon ECS
DescribeTaskDefinition API and may be shown in the ECS console, but it 1s not a valid field when registering a new task
definition. This field can be safely removed from your task definition file.

17 Warning: Ignoring property 'requiresAttributes' in the task definition file. This property is returned by the Amazon ECS
DescribeTaskDefinition API and may be shown in the ECS console, but it 1s not a valid field when registering a new task
definition. This field can be safely removed from your task definition file.

18 Warning: Ignoring property 'revision' in the task definition file. This property is returned by the Amazon ECS

DescribeTaskDefinition API and may be shown in the ECS console, but it is not a valid field when registering a new task Warnings are Safe to ignore

definition. This field can be safely removed from your task definition file.
They are the JSON fields left by duplicating
. | " o e | _ the old Task Definition and will be ignored
20 Warning: Ignoring property ‘'registeredAt’' 1in the task definition file. This property 1s returned by the Amazon ECS

DescribeTaskDefinition API and may be shown in the ECS console, but it is not a valid field when registering a new task t))/ tf?f; Ei(:t]()f?
definition. This field can be safely removed from your task definition f1ile.

19 Warning: Ignoring property 'status' in the task definition file. This property is returned by the Amazon ECS
DescribeTaskDefinition API and may be shown in the ECS console, but it 1s not a valid field when registering a new task

definition. This field can be safely removed from your task definition f1ile.

21 Warning: Ignoring property 'registeredBy' in the task definition file. This property is returned by the Amazon ECS
DescribeTaskDefinition API and may be shown in the ECS console, but it 1s not a valid field when registering a new task

definition. This field can be safely removed from your task definition file.

N
N

Deployment started. Watch this deployment's progress in the Amazon ECS console: https://us-west

ter/services/ensorcel l-webapp-prod-workers/events?region=us

¥y
Fp

2.console.aws.amazon.com/ecs/v2/clusters/cel l-prod-ecs-clu

) - |
WeSs T: L

Deploy

deploy: o — -
name: Deploy to ECS |~ name: Configure AWS Credentials
runs—on: ubuntu-latest uses: aws—actions/configure—aws—-credentials@v4
needs: [make_image] Run only if image built with:
environment: production audience: sts.amazonaws.com
concurrency: production Only run 1 at a time aws—region: us-west-2

= — - S — role-to—-assume: |

| # Permissions needed for 0IDC | e - arn:aws:lam::730335542499:role/github-oidc—provider-aws
permissions: | <= Same as build job => o

— = = — e

contents: read
1d-token: write

= — = = = ===

steps:
— name: Checkout code
uses: actions/checkout@v4

.gilthub/workflows/ci.yml

@pas256

Deploy

dep loy:
name: Deploy to ECS
steps:

— name: Download task definition
run: |
aws_ecs describe task definition_\

~

(

——query taskDefinition \
> /tmp/webapp-task—-definition. json

— name: Put new image ID 1n task definition
id: task-def-webapp
uses: aws—actions/amazon—-ecs—-render—-task-definition@vl

With: - Must match
* task deflnltlon ~ /tmp/webapp- tas defnltlonjson | name of container

In Task Definition

/ff\\

image: ${{ needs make_image. outputé image }}

.gilthub/workflows/ci.yml

This is what causes those warnings

@pas256

Task Definition for Service

{
"family": "my-prod-webapp",
"taskRoleArn": "arn:aws:iam::730335542499:role/my-task-role",
"executionRoleArn": "arn:aws:iam::730335542499:role/my—-ecs—task—-execution-role",
"networkMode": "awsvpc",
"requiresCompatibilities"' ["FARGATE"],
contalnerDeflnltlons [A -
(__ "name": “ensorcell-webapp-prod-webapp",
~ "image": "730335542499.dkr.ecr.us-west-2.amazonaws.com/ensorcell/app:main.20240823-200431.719f87f.ci",
"cpu': 1024,

"memory": 2048,
"essential': true,
"portMappings": [...],
"environment": [... 1,

"secrets": [... 1,
"logConfiguration": {
"logDriver": "awslogs",
"options": {
"aws logs—group': "/prod/ecs/ensorcell-webapp",
"awslogs—-region": "us—-west-2",
"awslogs—stream—-prefix": "ecs"

@pas256

Deploy

dep loy:
name: Deploy to ECS
steps:

— name: Download task definition
run: |
aws_ecs describe task definition_\

~

(

——query taskDefinition \
> /tmp/webapp-task—-definition. json

— name: Put new image ID 1n task definition
id: task-def-webapp
uses: aws—actions/amazon—-ecs—-render—-task-definition@vl

With: - Must match
* task deflnltlon ~ /tmp/webapp- tas defnltlonjson | name of container

In Task Definition

/ff\\

image: ${{ needs make_image. outputé image }}

.gilthub/workflows/ci.yml

This is what causes those warnings

@pas256

Deploy

dep loy:
name: Deploy to ECS
steps:

— name: Download task definition
run: |
aws ecs describe-task—-definition \
——task—-definition my-prod-webapp \
——query taskDefinition \
> /tmp/webapp-task-definition.json

— name: Put new image ID 1n task definition
id: task-def-webapp
uses: aws—actions/amazon—-ecs—-render—-task-definition@vl
with:
task—-definition: /tmp/webapp-task-definition.json
container—name: ensorcell-webapp—-prod—-webapp
image: ${{ needs.make_image.outputs.image }}

This is what causes those warnings

@pas256

— name: Deploy Amazon ECS task definition workers

id: deploy—-workers

uses: aws—actions/amazon—-ecs—deploy—-task—definition@v2

with:
task—definition: ${{steps.task—-def-workers.outputs.task-definition}}
cluster: my-ecs—-cluster
service: my-prod-webapp
wait-for-service-stability: true
wait-for-minutes: 10

From policy (4)

.gilthub/workflows/ci.yml

CI/CD Pipeline

ci.yml

on: push
& Test m3ls @ e @ Build, tag & push imag... 2m 49s e e & Deploy to ECS 7m 32s
& Lint and scan 23s

@pas256

ECR Repository Lifecycle Rules

Amazon ECR) Privateregistry » Repositories > ensorcell/app) Lifecycle policy

ensorcell/app
Lifecycle policy rules Reorder Edit test rules Actions ¥ Create rule
Priority A Rule description Summary

O 1 Keep the last 20 main images only expire | imageCountMoreThan (20) | tagged prefix [main.] .
Pro Tip:

O 2 Remove PR images after 45 days expire | sincelmagePushed (7 days) | tagged prefix [pr-] .
Delete old images to save 3

O 3 Remove anything untagged after 7 days expire | sincelmagePushed (7 days) | untagged

Lifecycle events history C

Q Filter events 1 2 3 4 5 6 7 .. 26)

Completed at v Message

2024-08-23T15:44:34.000Z PolicyExecutionEvent | 2 images affected

2024-08-23T15:44:34.000Z PolicyExecutionEvent | O images affected

2024-08-22T23:46:21.000Z PolicyExecutionEvent | 6 images affected

2024-08-22T23:46:21.000Z PolicyExecutionEvent | O images affected

2024-08-22T07:45:15.000Z PolicyExecutionEvent | 3 images affected

2024-08-21T15:43:03.000Z PolicyExecutionEvent | 1 images affected

Resources

~

4
oy

Slides < -
htt s://answersforaws.com/slide’\sf H

5 '
o
B .
o
';*»3“
O e . '}4
" .]
e

I

PR =\

https://qgithub.com/c a3256/cicd:-alk 2024

@pas256 46

https://answersforaws.com/slides
https://github.com/pas256/cicd-talk-2024

answersforaws.com

Infrastructure as Code Serverless

Ranking of Infrastructure as Code (laC) tools and services used to manage AWS

resources. Trend over the years

Alphabetical

2023 2024
AWS CloudFormation 1 AWS SAM
Terraform/OpenTofu
2 CDK
Cloud Development Kit (CDK)
3 Serverless Framework
Ansible 55.2%
[=
@« 4 Amplify
AWS OpsWorks o

AWS Application Composer

CDK for Terraform (CDKTF)

0 10 20 30 40 50 60 70 80 90 100

Lamby (Ruby on Rails)

Usage

Usage

Meetup In SF

Advanced AWS Meetup

* Meets every month, usually in SF
 Next meetup: October 17

LT TTT

Hastic

meetup.com/advancedaws

@pas256

Thank you

s

4
oy

Slides < -
htt s://answersforaws.com/slideé H

5 '
o
B .
o
';*»3“
O e . '}4
" .]
e

I

PR\

https://qgithub.com/c a3256/cicd:-alk 2024

@pas256 49

https://answersforaws.com/slides
https://github.com/pas256/cicd-talk-2024

